Exercise 33

(a) If $f(x)=x^{4}+2 x$, find $f^{\prime}(x)$.
(b) Check to see that your answer to part (a) is reasonable by comparing the graphs of f and f^{\prime}.

Solution

Calculate the derivative of $f(x)$ using the definition.

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[(x+h)^{4}+2(x+h)\right]-\left[x^{4}+2 x\right]}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[\left(x^{4}+4 x^{3} h+6 x^{2} h^{2}+4 x h^{3}+h^{4}\right)+2 x+2 h\right]-x^{4}-2 x}{h} \\
& =\lim _{h \rightarrow 0} \frac{4 x^{3} h+6 x^{2} h^{2}+4 x h^{3}+h^{4}+2 h}{h} \\
& =\lim _{h \rightarrow 0} \frac{h\left(4 x^{3}+6 x^{2} h+4 x h^{2}+h^{3}+2\right)}{h} \\
& =\lim _{h \rightarrow 0}\left(4 x^{3}+6 x^{2} h+4 x h^{2}+h^{3}+2\right) \\
& =4 x^{3}+2
\end{aligned}
$$

Below is a graph of $f(x)$ and $f^{\prime}(x)$ versus x.

